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Abstract—The power budget for embedded hardware im-
plementations of Deep Learning algorithms can be extremely
tight. To address implementation challenges in such domains,
new design paradigms, like Approximate Computing, have
drawn significant attention. Approximate Computing exploits
the innate error-resilience of Deep Learning algorithms, a prop-
erty that makes them amenable for deployment on low-power
computing platforms. This paper describes an Approximate
Computing design methodology, AX-DBN, for an architecture
belonging to the class of stochastic Deep Learning algorithms
known as Deep Belief Networks (DBNs). Specifically, we con-
sider procedures for efficiently implementing the Discriminative
Deep Belief Network (DDBN), a stochastic neural network
which is used for classification tasks, extending Approximation
Computing from the analysis of deterministic to stochastic
neural networks. For the purpose of optimizing the DDBN
for hardware implementations, we explore the use of: (a)
Limited precision of neurons and functional approximations of
activation functions; (b) Criticality analysis to identify the nodes
in the network which can operate at reduced precision while
allowing the network to maintain target accuracy levels; and
(c) A greedy search methodology with incremental retraining
to determine the optimal reduction in precision for all neurons
to maximize power savings. Using the AX-DBN methodology
proposed in this paper, we present experimental results across
several network architectures that show significant power
savings under a user-specified accuracy loss constraint with
respect to ideal full precision implementations.

I. INTRODUCTION

In recent years, there has been a significant increase
in the use of Deep Learning algorithms for a variety of
cognitive computing applications such as image recognition,
text retrieval and pattern completion [1]-[3]. Enabling such
algorithms to operate on low-power, real-time platforms such
as mobile phones and Internet of Things (IoT) devices is an
area of critical interest. On such platforms, a training proce-
dure is typically performed on a cloud server. This training
involves optimizing the parameters of a cloud-based neural
network using data presented to the device and uploaded
to the cloud. Thereafter, the cloud performs classification
when requested by the device, and subsequently the device
communicates with the cloud each time an inference task is
requested. This purely cloud-based approach to performing
inference has a number of drawbacks including high power
consumption, latency, security, and reliance on stable and
fast Internet connectivity, and is therefore not suitable for
use on ultra low-power devices with battery life constraints.
Implementing inference locally on embedded hardware is
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Fig. 1: Information Flow of the AX-DBN Methodology. The macro-
level design of our framework leaves all training, approximation, and
retraining to the cloud server. The hardware client sends a request
to the cloud server giving it an accuracy loss constraint and a fixed
bitwidth search space. The resulting approximated model is then used
for energy efficient inference on embedded hardware.

perceived to be a desirable solution to this problem and is
the focus of current research [4]-[7].

We propose a shared approach where the cloud performs
neural network training while a low-power implementation
of the neural network on a local device is used for performing
inference, as shown in Fig. 1. Neural networks are inherently
error-resilient [8] and, therefore, high precision of arithmetic
representations and operations is not necessary to generate
sufficiently accurate performance of such algorithms. This
property is exploited by Approximate Computing techniques
based on the use of limited precision representations and
algorithm-level approximations to achieve energy efficient
implementations with negligible performance loss [4], [5].
In this paper, we propose AX-DBN, an Approximate Com-
puting methodology for a class of stochastic neural networks
known as Discriminative Deep Belief Networks (DDBNSs).
These are multi-layered extensions of the Discriminative Re-
stricted Boltzmann Machine (DRBM) [3], which can be used
for classification in both supervised and semi-supervised
settings. Our proposed AX-DBN framework extends the
analysis of deterministic networks [4], [5] to the domain of
stochastic neural networks. AX-DBN involves training and
approximating on the cloud and performing classification on
embedded hardware, as depicted in Fig. 1. In this approach,
efficiency arises from exploiting arithmetical and functional
approximations subject to a user-specified accuracy loss



constraint relative to an ideal full precision implementation.
Related Prior Work. Previous work for neural network
implementations in hardware using Approximate Computing
have focused on feedforward deterministic networks solving
classification tasks [4], [5]. Venkataramani et al. [4] propose
a design-space exploration framework, AxNN, that system-
atically applies approximation techniques to deterministic
neural networks. Using ‘“resilience characterization,” their
approach identifies and applies limited precision approxi-
mation on neurons whose impact will be the lowest on
overall network performance to enable power optimized
classification. Zhang et al. [5] follows a similar approach
where the formulation of their neuron criticality analysis
is applied to identify neurons where approximate multiplier
circuits are instantiated to reduce power during classifica-
tion in feedforward neural networks. Their Approximate
Computing framework ApproxANN, along with their power
model, addresses energy savings for memory accesses and
computation workloads based on network structures and
hardware characteristics.

Contributions of this Paper. Extending the work of [4]
and [5] into the stochastic domain, we develop a method-
ology allowing for the design of an energy efficient im-
plementation of a stochastic Discriminative DBN (DDBN)
to balance the trade-off between performance and power.!
Power efficiency arises from selectively exploiting arithmeti-
cal and functional approximations subject to a user-specified
accuracy loss constraint. To accomplish this, two different
levels of approximation are considered in the hardware im-
plementation of a Discriminative DBN: (1) limited precision
representation of hidden neurons; and (2) functional approx-
imation of activation functions. The main contributions of
our work are as follows:

o The use of criticality analysis to rank order neurons
based on their contribution to DDBN network per-
formance. This work carries criticality analysis to the
domain of stochastic Deep Learning algorithms imple-
mented on finite precision digital hardware. Criticality
metric driven approximation using Cross Entropy is
compared against random ordering using Monte Carlo
simulations to gauge their effectiveness in limited preci-
sion network approximation with variable bitwidths for
individual neurons.

o The use of a greedy retraining procedure to optimize
neuron bitwidths under given accuracy loss constraints
with respect to ideal full precision implementations.

« The use of a generalized power model for both compu-
tation workloads and memory accesses based on fixed
point representations of individual neurons, number of
samples and hardware characteristics.

Qutline of the Paper. In Section II we review Discrimi-
native RBMs (DRBMs) and describe how they are stacked
to form Discriminative Deep Belief Networks (DDBNs). We

! Although the stochastic Deep Belief Network can perform both classifi-
cation and generation, in this paper we analyze its classification properties,
leaving an analysis of its generation properties for future work.
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Fig. 2: Discriminative RBM Architecture: The visible neurons v,
made up of input neurons x and classification neurons ¢, are con-
nected to the hidden neurons h by weights W and W, respectively.

also present the network structures that are implemented in
this paper. Section III describes how limited precision and
activation function approximation will be performed for the
purpose of implementing such networks on hardware. In
Section IV we present the mathematics for gradient-based
neuron criticality analysis in stochastic neural networks such
as DRBMs and DDBNs. In Section V we outline our AX-
DBN hardware design methodology. Section VI outlines the
power model used for this work. Section VII describes the
accuracy and power results for different DRBM and DDBN
architectures using our design methodology and resulting
conclusions. This work is a significant extension and im-
provement from our preliminary results reported in [9].

II. DISCRIMINATIVE DEEP BELIEF NETWORKS
AND NETWORK ARCHITECTURE

Here, we review the mathematical basics of the DRBM,
the building block of DDBNSs, and present the DRBM and
DDBN configurations used for this work.

A. Discriminative Restricted Boltzmann Machines. A Re-
stricted Boltzmann Machine (RBM) is a generative stochastic
artificial neural network that can learn a probability distri-
bution over its set of inputs. The RBM is a bipartite graph
that consists of two layers - one visible layer v where the
states of the units in this layer can be observed, and one
hidden layer h. The probability distribution implemented by
the RBM is given by the Boltzmann distribution defined by:
o~ E(w,h)

P(v,h) = S e Bwm (H
v,h

where the energy function E(v, h) is given below:

E(v,h) = —v"b" —h"b—v"Wh 2)

Here, b” and b are biases for the visible and hidden layers,
respectively, and W is the weight matrix between them [10].
From Eq. 1, one can derive the conditional distributions:

P(hjlv) = a(b; + > _ v:Wi) 3)

P('U1|h) :U(bqij +Zthij) (4)

J
where o (z) is the logistic sigmoid function 1/(1+exp(—zx)).
The training method we use is described in [10], where
the Contrastive Divergence (CD) method is applied to pro-
vide weight and bias updates. To use RBMs as classifiers,



Larochelle et al. [3] proposed the use of Discriminative
RBMs (DRBMs), which jointly concatenate the input x and
its associated “one-hot” target class ¢ to form the single
visible layer v, as illustrated in Fig. 2. The energy function
defined by [3] is given below:

E(x,h,c)=—ax"b" —h"b—c"b*— 2" Wh—c"W°h (5)

Here, b*, b and b° are biases of the visible, hidden, and
classification layers, respectively. W, W€ are the weight
matrices between layers as shown in Fig. 2. The inputs x
to the DRBM can be either binary or continuous. In the
scope of this work, we consider binary inputs x as they
can be used for efficient implementations on finite precision
hardware with low power and area.

Similar to the RBM, the following conditional distribu-
tions can be derived for a DRBM with V' visible, H hidden

and C class units [3]:
v

C
P(hjlv) = P(hjlz,c) = o(b; + > _wiWij + > _ ;W) (6)
i=1

=1

H
P(zilh) = (b} + 3 hiWiy) "
j=1
H
P(eilh) = softmax(b] + Y h; W) o
j=1

where o (x) is the logistic sigmoid function 1/(1+4exp(—z))
and softmax(z;) = exp(z;)/ 25:1 exp(x;) where i €
{1,---,k}. Similar to the RBM, the DRBM can also be
trained using Contrastive Divergence to estimate the network
weight and bias values [3]. Using the notation developed by
Larochelle et al. [3], the DRBM conditional probability of a
class label c; given input x is

e~ F(@ei)
Zf:l e~ F@ej)

where F'(x, ¢;) denotes the Free Energy of the DRBM given
input « and class label c;, as defined below:

P(ei|z) = ©)

H 4
F(x,c;) = —bg, —Z log (1—|—exp(bj—|—Wfq+Z Wﬂxl)) (10)
j=1 i=1
A trained DRBM can be used to perform classification
using two equivalent methods [11]:

o Free Energy: From Eq. 9, it can be seen that for a
given visible vector x the class ¢ that has the highest
probability of activation corresponds to the minimum
value of F'(x,¢;). Therefore, in this method, the Free
Energy for a given x is calculated for all labels c¢;. The
classification result is the class ¢; that corresponds to
the minimum Free Energy.

e Gibbs Sampling: The binary activation state of each
class can also be found by repeatedly sampling all
class neurons of the DRBM for a given visible vector.
The class with the highest activation frequency given
a sufficient number of sampling iterations is the
classification result.

The Gibbs Sampling method, with suitable approximations
for the sigmoid function, is more amenable to realization

Wt

Fig. 3: Discriminative DBN Architecture. The DDBN architecture
consists of stacked RBMs with a DRBM at the classification layer.
Similar to the DRBM, the visible neurons v are split into input neurons
x and class neurons c. Each hidden layer k!, where I € {1,---,L},
is greedily trained layer by layer [11].

on digital hardware than Free Energy due to the highly
nonlinear dependence of Free Energy on its input values.
Therefore in this work, we use Gibbs Sampling for inference
in our hardware implementations of DRBMs. Details of the
sigmoid function approximation are outlined in Section III.

B. Discriminative Deep Belief Networks. Deep Belief Net-
works (DBNs) are probabilistic generative models which
learn to extract a deep hierarchical representation from the
training data. Hinton et al. [11] shows that DBNs are stacked
RBMs and can be learned in a greedy manner by sequentially
learning RBMs. Using Contrastive Divergence, the first layer
is trained as an RBM with the input of the DBN as its input
layer and, after the first RBM is trained, the weights wl
are fixed, as well as representations of h'. The binary states
of the first hidden unit layer are then used as inputs training
the second RBM for W2, Iterating this way layer-by-layer,
the DBN can be trained by greedily training RBMs.

Similar to the DRBM, a DBN can also be used as a
discriminative model by concatenating a classification layer
to the final hidden layer, as shown in Fig. 3. Discriminative
DBNs (DDBNs) can be used to perform classification
using either Free Energy or Gibbs Sampling, as described
for DRBMs. With the Free Energy method, we compute
the activation probability of all hidden units across layers.
Following this, the classification result is given by the class
c that has the minimum Free Energy across all classes
based on the activation values from the last hidden layer L.
Using Gibbs Sampling, the binary activation state of each
class given a visible vector x is found by repeated sampling
of all hidden neurons across all layers and class neurons.
The correct classification result is given by the class with
the highest activation frequency. Similar to the DRBM, our
hardware implementations of DDBNs use Gibbs Sampling
for on-chip classification.

C. Network Architecture. We use the Discriminative DBN to
perform classification on the MNIST dataset, which contains
60k training samples and 10k test samples of 28x28 gray-
scale handwritten digits. We binarize the images using a
fixed threshold of 0.5. Throughout this paper, our DRBM and
DDBN naming conventions denote the amount of neurons in



each hidden layer bottom up, e.g. DDBN-100-200 denotes
a 2 layer DDBN with 100 neurons in the first hidden layer
and 200 neurons in the second hidden layer. Our analysis in
this paper is based on the following architectures:

« 300 neuron budget: DRBM-300, DDBN-100-200
« 600 neuron budget: DRBM-600, DDBN-100-200-300

III. LIMITED PRECISION & FUNCTION APPROXIMATION

Discriminative DBNs implemented with full precision
weights and biases and nonlinear sigmoidal activation
functions cannot be directly implemented for inference
on finite precision digital hardware platforms. We
therefore study the effect of fixed-point representations
and approximate sigmoid functions on DDBN classification
performance. These approximations form the basis of
our AX-DBN framework used for the implementation of
DDBNs in finite precision embedded hardware.

A. Limited Precision Approximation. Fixed-point is preferred
to floating-point representation because the latter requires
extensive area and power for digital hardware implementa-
tions [12]. As shown in Fig. 4, there are three steps in the
computation where fixed-point variables can be used to map
the network onto its limited precision (LP) version:

o LPI1 limits the precision of weight W and bias b
e LP2 limits the precision of the quantity Wa + b
o LP3 limits the precision of o(Wx + b)

B. Sigmoid Function Approximation. Approximate imple-
mentations and comparisons of sigmoid activation functions
designed for digital hardware exist in the literature [13], [14].
Here we use PLAN, a piecewise linear approximation of the
sigmoid function proposed by Amin et al. [14] in our design

f(x) z>0
v={1 e 2o (b
where
1 z>5
0.03125x + 0.84375 2375 <z <5
@) = 0.125z + 0.625 1<a<237
0.25x 4+ 0.5 0<z<1

Only addition and shift operations are involved in the ap-
proximation given by Eq. 11 which allows for a relatively

x_ Wb z=W-x+b a=o@ h=1(@> mnd)

ayer ayer
. [ w2 LP3 e

Fig. 4: Stages of Limited Precision Approximation. We can exploit
limited precision (LP) approximations at various stages in the network.

inexpensive implementation in digital hardware with minimal
accuracy loss.

IV. NEURON ORDERING USING CRITICALITY ANALYSIS

A neuron is said to be critical if a network’s performance
is significantly degraded by random noise injected on said
neuron, otherwise it is said to be resilient [5]. The per-
formance of a neural network is invariant to lowering the
precision of, or even removing, resilient neurons, whereas it
is significantly degraded otherwise. In the AxNN [4] and Ap-
proxANN [5] design methodologies, which use deterministic
feedforward networks, the Euclidean distance between the
classification output and true label is used as the loss function
for both training and criticality analysis. The magnitude
of the average loss over all training samples is used to
characterize the criticality of each neuron.

For the case of stochastic neural networks, such as DRBMs
and DDBNS, in this paper we perform the following steps
for criticality analysis:

o After performing stochastic learning, we estimate the
criticality of individual neurons using a gradient-based
backpropagation approach as outlined in [4] and [5].
However, unlike deterministic models, DRBMs and
DDBNs are fundamentally stochastic models which
can in principle be used for both discrimination and
generation tasks. Keeping this perspective of a fully
probabilistic framework, we propose the use of Cross
Entropy as a loss function for determining critical
neurons using gradient-based backpropagation.

o Inference in DRBMs and DDBNs is performed by
Gibbs Sampling as described in Section II for ease
of implementation in digital hardware. However, for
criticality analysis we represent the binary states of
the neurons in these networks with their activation
probabilities, which are continuous between 0 and 1.

In the Cross Entropy (CE) loss function, y; and af
denote the one-hot ground truth and softmax class prediction
probabilities, respectively.

Lcg = — Zyj In (a?)

The derivative of a given lojss function with respect to the
value of a hidden neuron relates that neuron’s contribution
to classification error caused by bitwidth and functional
approximations at that neuron. Using CE, the error sensitivity
of loss due to corruption of neuron j in layer h” (denoted
as hf) of a DDBN with L layers is defined in Eq. 12,
where af is defined by the softmax output in Eq. 8 and
2f = b5+ 30 hE W
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The error sensitivity of neuron j in hidden layers h!, where
l < L, is computed by Eq. 13. The binary states of individual
neurons h! are approximated by their sigmoid output al.
Here, o(z!) = 1/(1 + exp(—21)).

OLcE -y oL dalt
T o l+1 l
ahj Oa; ahj

i

oL (13
=3 i o oW
For k samples of training data, the criticality score for
neuron j in hidden layer h! with Ny neurons, where [ €
{1,---, L}, is given by:
E[h;]
N,
e o B[R]

l

criticality (hlj )= (14)

L,
Where ]E[hé] = %Zx,yedata a;ile :

The hidden neurons are then ranked in order from least to
most critical by the magnitude of these obtained scores.

V. AX-DBN DESIGN METHOLODOGY

The design methodology illustrated by Fig. 1 is composed
of two parts: (1) a cloud-based training and approximation
process that optimizes the precision of individual neurons
for inference on hardware; (2) inference performed locally
on embedded hardware.

A. Cloud-based Model Training and Approximation. The
approximation algorithm is a scalable framework that can
be applied to any fully connected network of variable
width and depth. Figure 5 illustrates the approximation flow
chart, starting with a user-specified accuracy loss constraint
with respect to a full precision implementation and a set
of allowed bitwidths for a specified DRBM/DDBN model
then ending with its approximated counterpart. Algorithm 1
formally describes this approximation procedure and can be
summarized by two stages:

1) Full precision training and uniform bitwidth reduction

2) Neuron bitwidth reduction using (a) neuron criticality
analysis and retraining and (b) limited precision neuron
approximation

Stage 1 first trains the specified model at full precision
then subsequently reduces bitwidth uniformly across all
weights and biases until it can no longer maintain the
accuracy loss constraint. Stage 2 first analyzes and rank
orders hidden neurons according to a given criticality metric,
then individually approximates these neurons based on the
criticality ranking and, finally retrains the limited precision
model to allow for further network approximation. In our
experiments, hidden neurons can be represented at 64-bit
(28.56, 16-bit (8.8, 12-bit 6.6, 8-bit Q4.4, or 4-bit Q1.3
precision.? Here, we use @Qm.n to denote the fixed-point
precision format with m integral bits (including sign bit),
and n fractional bits. Additionally, the algorithm can prune
the neuron completely. Class neurons are represented at

2We found that these @Qm.n bitwidths gave the best accuracy when
approximating the models uniformly.

Algorithm 1 AX-DBN Approximation Algorithm. The approx-
imation algorithm greedily explores neuron bitwidth distribu-
tions given a specified model (modelp), an accuracy constraint
(accmin), and a set bitwidth search space (bw). Algorithm
hyper-parameters include the desired neuron step size (numc),
the number of approximated resilient neurons (numr), the total
number of hidden neurons (numhid). The summed difference in
all neurons bitwidths between successive criticality-retraining
iterations is Asumbit.
Input: specified model [modely], min accuracy [acCpin],
bitwidth search space [bw]
model < fullprecisionTraining(modely)
model,y < uniformApprox(model)
while Asumbit > 0 do

order < criticalityScore(model,y)

numr <— numhid

while numr > 0 and acc > accp;, do

model,x < neuronApprox(model,, numr, order)

A o e

8: numr <— numr — numc
9:  end while
10.  model,y < retrain(model,y)
11: end while
Output: approximated model [model,]

16-bit (8.8 precision and not considered in our optimization
due to their relatively minor impact on power savings when
compared to that arising from approximating the larger
number of hidden neurons considered in our architectures.

B. Inference in Hardware. After the cloud-based approx-
imation procedure is completed, we download the limited
precision weights and biases onto embedded hardware and
perform Gibbs Sampling for local inference, as described
in Section II. As depicted in Fig. 6, our hardware imple-
mentations use a pipelined architecture consisting of L + 1
stages with one stage for each of the L hidden layers and a
classification layer, respectively.

VI. POWER MODEL FOR COMPUTATION WORKLOAD
AND MEMORY ACCESS

To perform inference on a DDBN with x visible units, ¢
class units, k£ data samples, and L hidden layers each with
Np, hidden neurons, a chip needs to read network parameters
and input data from memory and to write classification
results to memory. Each weight or bias is represented by
an g-bit fixed-point number, each input sample is a z-dim
binary vector, and each classification result is represented by
a c-dim binary vector. In this model, ¢ refers to m + n in
a (Qm.n representation and the number of neurons at g-bit
precision in hidden layer h' is given by N}/ .

The power for off-chip to on-chip data transfer DT is
given by Eq. 15, where the power consumption for reading
and writing 1 bit of data is given by A. The computation
workload CW is defined by Eq. 16 in terms of multiply-
accumulate operations, where power consumption for a g-bit
ALU operation is given by B,. A is obtained by modeling
in CACTI [15]. We calculate B, as the average accumulator
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Fig. 5: Cloud Server Network Approximation Design Flow. The approximation algorithm can be broken into two stages: (1) uniform
bidwidth reduction and (2) neuron criticality analysis with systematic bitwidth reduction and retraining. The algorithm takes in a specified model,
a set bitwidth search space, and an accuracy loss constraint as inputs then returns an approximated energy-efficient model. All algorithm
hyperparameters are shown in red. The number of hidden neurons is given by numhid, the number of resilient neurons to approximate is given

by numr, and the search step size if given by numec.

Fig. 6: DDBN Inference on Local Embedded Hardware. In our
hardware implementations, we use Gibbs Sampling to propagate
binary activation states from the input layer = to the classification
layer ¢ and use the PLAN approximation for each sigmoid output.
Each hidden layer performs random sampling using a pseudo-random
pattern generator (PRPG) implemented in hardware.

power consumption using Verilog implementations of our
specified DRBM and DDBN architectures at g-bit precision
with Synopsys EDA tools using a 65 nm standard cell library.
We estimate the total power consumed by an AX-DBN
approximated model to be the combination of its data transfer
and computation workload, i.e D7+ C'W. In our implemen-
tation, ¢ takes the following values: {4,8,12,16,64}.

VII. EXPERIMENTAL RESULTS

An effective criticality metric should be able to accurately
determine hidden neurons that can be approximated using
lower precision representations while maintaining specified
classification accuracy above a desired threshold. Our sim-
ulations show that the criticality measure based on Cross
Entropy used in this paper achieves this objective. Owing to
the stochasticity of our models, we run 200 Monte Carlo it-
erations to obtain distributions of power savings and average
neuron bitwidth. A different random seed is used in each
Monte Carlo iteration to initialize the weights and biases of

64 L—-1
DT =A ((x +1)) gNE > (Na, +1)
q=1 =1

64 L—1
CW =k <(:1c +1)

q=1 =1

Z(BqNgl) + Z(Nhl +1) Z BqNg(Hl)

a new model and train it using Contrastive Divergence (CD)
on the MNIST dataset. We then compare the performance of
criticality metric driven realizations versus that of random
ordering.

We explore the effectiveness of our AX-DBN framework
across the DRBM and DDBN architectures presented in
Section II. For an even comparison, we fix the total number
of neurons as we increase the depth of the network - i.e.
DDBN-100-200 and DRBM-300 will both have a fixed
budget of 300 neurons. In our experiments, we first train each
network using Contrastive Divergence on the MNIST dataset,
we then perform our criticality-driven approximations on
each network, and finally evaluate the approximated model’s
performance. Reducing the bitwidth of all neurons uniformly
results in significant accuracy degradation, as shown in
Table I. With each median and mean, we provide the Inter-
Quartile Range (IQR) and standard deviation in parenthesis,
respectively. Using criticality-driven neuron approximation
and pruning, we are able to significantly reduce the average
neuron bitwidth while maintaining user-specified accuracy
loss constraints with respect to ideal full precision imple-
mentations, as shown in Tables II and III.

Figures 7, 8, 9 and 10 visualize the power savings with
respect to a 64-bit implementation, the distribution of neuron
bitwidths, and average neuron bitwidth for 1% and 5%
accuracy loss constraints for different network architectures.
We observe that approximated networks realized using Cross
Entropy driven critical neuron determination yield higher
average power savings and lower average neuron bitwidths
when compared to those realized using random neuron
ordering. Overall, Cross Entropy is an effective metric for
hidden neuron criticality determination across accuracy loss
constraints and stochastic network architectures.

64
Y (@Ng )+ 16(Nu, + 1)C+k(m+c)> (15)
q=1
64
+ Bi6(Nny, + 1)C> (16)
qg=1



Architecture 4-bit 8-bit 12-bit 16-bit 64-bit
DRBM-300 54.5(5.3) 88.6 (1.1) 94.0 (0.3) 94.3(0.2) 94.3(0.3)
DDBN-100-200 73.7 (4.7) 94.3 (0.5) 95.9(0.2) 95.9(0.2) 96.0 (0.2)
DRBM-600 542(42) | 827(3.0) | 950(02) | 95.3(02) | 95.3(0.2)
DDBN-100-200-300 | 58.8 (7.4) | 93.0(0.8) | 95.6(02) | 95.6(0.2) | 95.9(0.2)
DRBM-300 54.6(3.8) | 88.5(0.8) | 94.0(02) | 943(02) | 943(0.2)
DDBN-100-200 74.0 (3.8) 94.3 (0.4) 95.9 (0.1) 95.9(0.2) 95.9 (0.1)
DRBM-600 54.0 (3.0) 82.5(2.3) 95.0 (0.2) 95.3(0.2) 95.3(0.2)
DDBN-100-200-300 58.7 (5.3) 92.8 (0.7) 95.6 (0.2) 95.6 (0.2) 95.9 (0.2)

TABLE I: Classification Accuracy at Uniform Model Bitwidths.
We run 200 Monte Carlo iterations to measure the median (top) and
mean (bottom) test accuracy of each architecture when reducing the
bitwidth of each neuron uniformly. With each median and mean, we

provide the IQR and standard deviation in parenthesis, respectively.

Architecture FP Random CE
DRBM-300 943(0.3) | 93.7(0.7) | 11.1-bit (0.4) | 93.6(0.5) | 10.2-bit (0.6)
DDBN-100-200 96.0(0.2) | 95.0(0.2)[9.63-bit (0.9) | 94.8(0.2) | 8.72-bit (0.9)
DRBM-600 95.3(0.2) 94.7 (0.8) | 11.3-bit (0.3) 94.5 (0.6) | 9.68-bit (0.7)
DDBN-100-200-300 95.9(0.2) 94.8 (0.4) | 10.3-bit (0.6) 94.8 (0.3) | 8.72-bit (0.7)
DRBM-300 94.3(0.2) 93.8 (0.5) | 11.1-bit (0.3) 93.7 (0.4) | 10.2-bit (0.4)
DDBN-100-200 959(0.1) | 95.0(0.2)|9.57-bit (0.7) | 94.8(0.2) | 8.71-bit (0.7)
DRBM-600 953(0.2) | 94.9(0.5) | 11.2-bit (0.3) | 94.6 (0.4) | 9.66-bit (0.5)
DDBN-100-200-300 | 95.9(0.2) | 94.8(0.2)| 10.3-bit (0.5 | 94.8(0.2) | 8.71-bit (0.5)

TABLE II: Classification Accuracy after AX-DBN Criticality-
Driven Network Approximation with a 1% Accuracy Loss Con-
straint. We run 200 Monte Carlo iterations to measure the median
(top) and mean (bottom) test accuracy and average neuron bitwidth
of each architecture when approximating with AX-DBN given a 1%
accuracy loss constraint. With each median and mean, we provide
the IQR and standard deviation in parenthesis, respectively. The
classification accuracy of the full precision (FP) model on the test

dataset is given by the first column. FP denotes the full precision 64-bit

floating point model.

Architecture FpP Random CE
DRBM-300 943(0.3) | 91.8(1.5) |8.00-bit (0.6) | 92.4(1.0) | 6.46-bit (1.0)
DDBN-100-200 96.0(0.2) | 924(1.0) | 6.91-bit (0.4) | 92.5(0.8) | 5.92-bit (0.5)
DRBM-600 953(0.2) | 93.5(1.1)[9.05-bit (0.6) | 94.4(0.7) | 6.86-bit (I.1)
DDBN-100-200-300 | 95.6(0.2) | 92.4(0.9) | 7.36-bit (0.4) | 92.3(0.8) | 6.13-bit (0.4)
DRBM-300 94.3(0.2) 91.7 (0.9) | 8.09-bit (0.4) 92.2 (0.8) | 6.52-bit (0.7)
DDBN-100-200 95.9 (0.1) 92.4 (0.6) | 6.89-bit (0.3) 92.4 (0.6) | 5.89-bit (0.3)
DRBM-600 95.3(0.2) 93.7(0.7) | 9.10-bit (0.5) 94.3 (0.6) | 6.81-bit (0.7)
DDBN-100-200-300 95.9 (0.2) 92.3(0.7) | 7.38-bit (0.3) 92.2 (0.6) | 6.15-bit (0.3)

TABLE III: Classification Accuracy after AX-DBN Criticality-
Driven Network Approximation with a 5% Accuracy Loss Con-
straint. We run 200 Monte Carlo iterations to measure the median
(top) and mean (bottom) test accuracy and average neuron bitwidth
of each architecture when approximating with AX-DBN given a 5%
accuracy loss constraint. With each median and mean, we provide
the IQR and standard deviation in parenthesis, respectively. The
classification accuracy of the full precision (FP) model on the test
dataset is given by the first column. FP denotes the full precision 64-bit
floating point model.

VIII. CONCLUSIONS

In this paper, we propose a systematic approximation
methodology for stochastic Discriminative Restricted Boltz-
mann Machines (DRBMs) and Discriminative Deep Belief
Networks (DDBNs) to optimize power consumption subject
to the constraint of maintaining user-specified classification
accuracy. This work extends criticality analysis from the
domain of deterministic neural networks to the realm of
stochastic networks. Our procedure involves two key steps:
(1) The use of criticality analysis to rank order neurons
based on their contribution to network performance; (2) The
use of greedy retraining to optimize neuron bitwidths under

accuracy constraints. Our results show that Cross Entropy
can be used as an effective metric for determining neuron
criticality in stochastic network approximation and yields
lower average neuron bitwidth representations as well as
higher savings in power consumption when compared to
random criticality ordering of neurons. Our future research
will extend our methodology to optimize the power con-
sumption of hardware implementations of generative neural
networks for purposes such as image generation, denoising,
and infilling.
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